509. Fibonacci Number
题目
The Fibonacci numbers, commonly denoted F(n)
form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0
and 1
. That is,
F(0) = 0, F(1) = 1 F(n) = F(n - 1) + F(n - 2), for n > 1.
Given n
, calculate F(n)
.
Example 1:
Input: n = 2 Output: 1 Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
Example 2:
Input: n = 3 Output: 2 Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
Example 3:
Input: n = 4 Output: 3 Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
Constraints:
0 <= n <= 30
Related Topics
思路一
递归法解决问题,使用 python 时,可以使用 function.tools 中的 cache 缓存计算结果,时间复杂度由原来的 O(2n) 降低到 O(N)
解法
python
from functools import cache
class Solution:
def fib(self, n: int) -> int:
@cache
def fib(self, n: int) -> int:
if n == 0:
return 0
elif n == 1:
return 1
else:
return self.fib(n - 1) + self.fib(n - 2)
复杂度分析
- 时间复杂度 O(N)
- 空间复杂度 O(N)
解法二
py
# leetcode submit region begin(Prohibit modification and deletion)
class Solution:
def fib(self, n: int) -> int:
if n < 2:
return n
p, q, r = 0, 0, 1
for i in range(2, n + 1):
p, q = q, r
r = p + q
return r
# leetcode submit region end(Prohibit modification and deletion)
复杂度分析
- 时间复杂度 O(N)
- 空间复杂度 O(1)